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Abstract

We modify the Pennes model by taking into account the thermal relaxation time of biological tissue. Specifically, we employ the Max-
well–Cattaneo thermal flux law, in conjunction with the fourth power law, to model the effects of high thermal radiation on such skin.
The skin is considered to be a 3D triple-layered structure with embedded dendritic countercurrent multi-level blood vessels, artery and
vein, where the dimensions and blood flow of the multi-level blood vessels are determined based on the constructal theory of multi-scale
tree-shaped heat exchangers. The method is illustrated by a numerical example.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

High thermal radiation produced by intense fire is often
encountered in daily life, e.g., wild fires and chemical fires.
Understanding the effect of high thermal radiation on bio-
logical bodies, specifically, thermomechanical damage to
tissue, requires the accurate description of bioheat transfer.
It is known that heat transfer within the human body is a
complicated process involving metabolic heat generation,
heat conduction and blood perfusion in soft tissue, convec-
tion and perfusion of the arterial-venous blood through the
capillary, and interaction with the environment. The mod-
eling of heat-related phenomena such as bioheat transfer
and heat-induced stress is of great importance for the
development of biological and biomedical technologies,
such as thermotherapy and the design of heating or cooling
garments, as well as protecting human life in cases of acci-
dental or natural disasters [1,2].

In the early 1990s, it was discovered that biological tis-
sue, along with a number of other common materials,
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exhibited a relatively long thermal relaxation (or lag) time,
often denoted by s (see [3]). Physically, s represents the
time required to establish steady thermal conduction in a
material volume element once a temperature gradient has
been imposed across it. The implication of such large val-
ues of s, which could range up to 100 s (see [4]), is that heat
conduction in organic media is generally not described by
Fourier’s law, the classical expression for the thermal flux
vector ~q, but rather by the Maxwell–Cattaneo flux law
[5–13], namely

1þ s
o

ot

� �
~q ¼ �krT ; ð1Þ

where k and T denote the thermal conductivity and tissue
temperature, respectively. Eq. (1) predicts that heat con-
duction in such media occurs not by diffusion, but in a
wave-like manner, a phenomena now known as ‘‘second
sound” (again, see [5–13]).

The objective of this article is to develop a new mathe-
matical model based on the Maxwell–Cattaneo flux law,
along with numerical techniques, for predicting the ‘‘burn-
ing” (i.e., thermal damage) inflicted upon skin, as modeled

mailto:dai@coes.latech.edu


Nomenclature

Bi Biot number
Cl; Cl

b specific heat of tissue and blood in layer l
CB heat capacity of blood
Fm area of cross-section in the mth level vessel
h heat convection coefficient
kl heat conductivity of layer l

Ll thickness of layer l

Lm
b length of the blood vessel in level m along the

flowing direction of blood
Mm main flow of blood in the mth level vessel
Nx; Ny ; Nz

l numbers of grid points in the x, y, z direc-
tions, respectively

NX, NY lengths of the skin structure in the x, y direc-
tions, respectively

NLm
b ; NW m

b length and width of the cross-section of the
mth level vessel

P vessel periphery
_P blood flow rate
ðslÞnijk numerical solution of function Sl

T m
b ; T l; T m

w temperatures in blood, tissue, and vessel
wall, respectively

Tin, Tout temperatures of blood at entrance and exit,
respectively

Ta ambient temperature
t time
un

ijk numerical solution of temperature of tissue
um

b numerical solution of temperature of blood in
the mth level vessel

vm velocity of blood flow in the mth level vessel
W l

b blood perfusion rate in layer l

x, y, z Cartesian coordinates
a heat transfer coefficient between blood and tis-

sue
d2

x ; d2
y ; d2

z second-order finite difference (FD) operators
Dx, Dy, Dz mesh sizes of FD scheme for bioheat transfer

model in the x, y, z directions
Dt time increment used in calculating heat transfer
e emissivity
x relaxation factor
ql density of layer l

r Stefan–Boltzmann constant
s thermal lag time
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as a 3D composite structure, exposed to high thermal radi-
ation; and thus provide information on the effects of high
thermal radiation on a biological tissue. Our method differs
from existing methods [14–25] in that our mathematical
model is based on Eq. (1), which takes into account the rel-
atively large thermal relaxation time of biological tissue, in
conjunction with the fourth power law. In addition, the
skin model we consider is a 3D, triple-layered structure,
wherein is embedded countercurrent multi-level dendritic
blood vessels, arteries and veins.

And it should be noted that the dimensions and blood
flow rates of the multi-level blood vessels have been deter-
mined based on the recently developed constructal theory
of multi-scale tree-shaped heat exchangers [26–29].

2. Bioheat transfer model

Under Fourier’s flux law, the governing equation that
describes the thermal conduction in biological tissue is
given by

qC
oT
ot
¼ �r �~qþ W bCbðT b � T Þ þ Q; ð2Þ

~q ¼ �krT ; ð3Þ

where T is the tissue temperature; Tb is the blood temper-
ature; q, C, and k denote the density, specific heat, and
thermal conductivity of the tissue, respectively; Q is the
volumetric heat; Cb is the specific heat of blood; and Wb

is the blood perfusion rate. Substituting ~q in Eq. (3) into
Eq. (2), one may obtain the well-known Pennes bioheat
transfer equation [14]
qC
oT
ot
¼ �r �~qþ W bCbðT b � T Þ þ Q: ð4Þ

If, in place of Fourier’s law, we employ the Maxwell–Cat-
taneo flux law, Eq. (1), then a modified (i.e., hyperbolic)
form of the Pennes equation is obtained as the PDE which
governs bioheat transport. Furthermore, if the tissue med-
ium is now taken to be skin, which we model here as a 3D,
triple-layered (i.e., composite) structure, and where each
layer is assumed to be a thermally conducting rigid body,
then the bioheat transport equation that follows from the
Maxwell–Cattaneo law can be written as follows [21,22]:

qlCl
oT l

ot
þ s

o2T l

ot2

� �
þ sW l

bCl
b

oT l

ot

¼ kl
o

2T l

ox2
þ o

2T l

oy2
þ o

2T l

oz2

� �
þ W l

bCl
bðT out � T lÞ þ Ql;

l ¼ 1; 2; 3; ð5Þ

where Tl is the temperature of the lth tissue layer; Tout is
the blood temperature at exit or entrance of the third level
vessel for the artery or vein; ql, Cl, and kl denote the den-
sity, specific heat, and thermal conductivity of the lth tissue
layer, respectively; s is the thermal relaxation time; Cl

b is
the specific heat of blood; and W l

b is the blood perfusion
rate. And since we only consider radiation heating in the
present study, all other internal heat sources Ql are ig-
nored. Here, we observe that when s is zero, the above
equation reduces to the Pennes equation [14].

According to the medical literature, the largest arteries
of the skin are arranged in the form of a flat network in
the subcutaneous tissue, immediately below the dermis.
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The dermis is very sparingly supplied with capillaries and
the capillary beds of skin lie immediately below the epider-
mis [30]. Fig. 1 shows a realistic skin structure configura-
tion [31].

To simplify our computation, we consider the target
region to be a rectangular structure embedded with two
countercurrent multi-level blood vessels that cross through
the subcutaneous layer from the bottom to the top, as
shown in Fig. 2. Note that only large blood vessels can
be seen in the subcutaneous, because the dermis layer con-
Fig. 1. A configuration of a skin structure.

Fig. 2. A three-dimensional triple-layered skin struc
sists of only capillaries and the contribution of these small
vessels to the heat transfer can be ignored [32].

In Fig. 2, the basic arterial model consists of the large
central vessel (level 1) running lengthwise (in the z-direc-
tion) along the control volume. This vessel has a horizontal
(in the x-direction) vessel (level 2) branching from it. The
second vessel goes to third vessel (level 3) which runs again
lengthwise (in the z-direction). The second vessel does not
branch into two third vessels, and the diameters of these
are also the same, which are similar to those in [33]. These
vessels are modeled as slim cuboids for simplicity. The
diameters of the arteries are assumed to be decreasing by
a constant ratio c between successive levels of branched
vessels, which is given by [27]
c ¼ NL2
b

NL1
b

¼ NW 2
b

NW 1
b

¼ 2�
1
3; ð6Þ
ture embedded with countercurrent vasculature.

Table 1
Parameters for a 3D skin structure [21,33,45,46]

Parameters Values Parameters Values

a (W/�C cm2) 0.2 k2 (W/cm �C) 0.0052
C1 (J/g �C) 3.6 k3 (W/cm �C) 0.0021
C2 (J/g �C) 3.4 _P (1/s) 0.5 � 10�3

C3 (J/g �C) 3.06 v1 (m/s) 0.08
C1

b (J/g �C) 0 W 1
b (g/cm3 s) 0

C2
b (J/g �C) 4.2 W 2

b (g/cm3 s) 0.0005
C3

b (J/g �C) 4.2 W 3
b (g/cm3 s) 0.0005

CB (J/cm3 � �C) 4.134 q1 (g/cm3) 1.2
h (W/cm2) 0.001 q2 (g/cm3) 1.2
k1 (W/cm �C) 0.0026 q3 (g/cm3) 1



Table 2
Parameters used in computation

Parameters Values Parameters Values

Bi = a/k3 95.23 Ta (�C) 200
L1 (cm) 0.008 Tin (�C) 37
L2 (cm) 0.2 x 1
L3 (cm) 1.0 Dx (cm) 0.02, 0.01
L1

b (cm) 0.4 Dy (cm) 0.02,0.01
L2

b (cm) 0.28 Dz (cm) 0.002
L3

b (cm) 0.2 Dt (s) 0.1
NX, NY (cm) 0.5 e 0.9
NL1

b; NW 1
b (cm) 0.1 r (W/m2 K4) 5.669 � 10�8

NL2
b; NW 2

b (cm) 0.08 s (s) 20
NL3

b; NW 3
b (cm) 0.08

T0 (�C) 34

Table 3
Parameters used in Eq. (19) based on Takata’s model [39]

Temperature range (�C) T 6 50 T > 50

Activation energy DE (J/K mol) 4.18 � 108 6.69 � 108

Scaling factor f (1/s) 4.322 � 1064 6.69 � 10104

Fig. 3. Profiles of temperature at t = 200 s along lines: (a) at y = 0.5 cm, (b) at
the center of the skin surface, as well as (d) at the point with x = 0.5 cm, y =
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where NLm
b and NW m

b are the length and width of the cross-
section of a blood vessel in level m, respectively. The length
of blood vessel is assumed to be double after two consecu-
tive construction steps, which can be expressed in the
length-doubling rule [28] as follows:

Lm
b ¼ 2

1
2Lmþ1

b ; m ¼ 1; 2; ð7Þ

where Lm
b is the length of the blood vessel in level m. The

mass flow of blood in the mth level vessel, Mm = vmFm, is
assumed to satisfy [28],

M1 ¼ 2M2; M2 ¼ M3; ð8Þ

where vm is the blood flow velocity and Fm (=NLm
b � NW m

b Þ
is the area of the cross-section in the mth level vessel.

Furthermore, the blood temperature in the cross-section
of a vessel is assumed to be uniform. We further assume
that a steady-state energy balance in the blood vessel can
be reached because the length of the considered blood ves-
sel is relatively short and the blood velocity is relatively
high. However, one may use a transient heat transfer equa-
tion for a more accurate solution. Hence, the convective
x = 0.5 cm, on the skin surface, and (c) along the depth (the z-direction) at
0.5 cm, and z = 0.1 cm over time.



Fig. 4. Comparison of the solutions obtained by Pennes equation and the
modified Pennes equation at locations: (a) x = 0.5 cm, y = 0.5 cm and
z = 0 cm and (b) x = 0.5 cm, y = 0.5 cm and z = 0.1 cm.
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energy balance equations, which are used to calculate the
main artery (levels 1 and 2) blood temperatures, can be
expressed as [34,35]

CBM1

dðT 1
bÞ

dz
� aP 1 T 1

w � T 1
b

� �
¼ 0; ð9Þ

and

CBM2

dðT 2
bÞ

dx
� aP 2 T 2

w � T 2
b

� �
¼ 0; ð10Þ

where CB is the heat capacity of blood, and a is the heat
transfer coefficient between blood and tissue, and Pm is
the vessel perimeter. Further, T m

w and T m
b are the wall tem-

perature and the blood temperature in the mth level vessel.
For the smallest, terminal arterial vessels (level 3), a de-
creased blood flow rate ( _P ) is included in the energy bal-
ance equation [34,35]

CBM3
dðT 3

bÞ
dz
� aP 3 T 3

w � T 3
b

� �
� _PCBFT 3

b ¼ 0: ð11Þ

For simplicity, the venous model is taken to be similar to
the arterial model, except that the blood flow direction in
the vein is opposite of that in the artery; i.e., countercurrent
flow occurs in these two kinds of vessels (see Fig. 2). Also,
the diameter ratio, length ratio, and mass flow ratio of the
blood between the successive levels of the branched veins
take the same form as described in Eqs. (6)–(8) for the
arteries. Moreover, the convective energy balance equa-
tions (9)–(11) used to calculate the blood temperature in
the artery domain is applied to the vein domain at the cor-
responding levels.

On the surface of the skin, we assume that heat exchange
with the surroundings, which may include heat loss from
convection and radiation [36], is described as follows:

�k1
oT 1

oz
¼ hðT a � T 1Þ þ erðT 4

a � T 4
1Þ; z ¼ 0; ð12Þ

where h is the convective heat transfer coefficient, Ta is the
ambient temperature, r is the Stefan–Boltzmann constant,
and e is the emissivity. Because we consider radiation heat-
ing, the temperature Ta is much higher than T1. And for
simplicity, we assume that the heat flux approaches zero
as the tissue depth increases, which is realistic for a biolog-
ical body [21]. The other boundary conditions in the tissue
are assumed to be

oT l

o~n
¼ 0; ð13Þ

where ~n is the unit outward normal vector on the bound-
ary. At the entrance to the first level vessel, we have

T 1
b ¼ T in; ð14Þ

where Tin is the blood temperature at the entrance of the
artery. At the exit of the artery, we assume that the blood
temperature is equal to the surrounding tissue temperature

T 3
b ¼ T out: ð15Þ
Because the blood flow in the vein is oriented against the
arterial flow, the entrance of the blood to the vein is located
at the third level, and the blood temperature is equal to the
surrounding tissue temperature.

The continuity of heat transfer between the lateral blood
vessel and the tissue requires [37]

oT m
b

o~n
¼ BiðT m

w � T m
b Þ; m ¼ 1; 2; 3: ð16Þ

The interfacial continuity conditions between layers are
given by

T 1 ¼ T 2; k1
oT 1

oz
¼ k2

oT 2

oz
; z ¼ L1; ð17aÞ

T 2 ¼ T 3; k2

oT 2

oz
¼ k3

oT 3

oz
; z ¼ L1 þ L2: ð17bÞ

The initial conditions are

T l ¼ T 0; t ¼ 0; l ¼ 1; 2; 3: ð18Þ

A quantitative description of thermal damage to skin, as
suggested by Henriques and Mortiz [38], can be written as
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oX
ot
¼ f exp � DE

RT l

� �
; ð19Þ

where f is the frequency factor, DE is the activation energy
controlling the development of tissue injury, and
R = 8.314472 J K�1 mol�1 is the gas constant. The temper-
ature Tl is determined using Eq. (5). Here, we note that
X = 0.53, 1.0, 104 correspond to first, second, and third de-
gree burn injuries, respectively [39].
3. Numerical method

We denote ðulÞnijk and ub the numerical approximations
of (Tl)(iDx, jDy, kDz, nDt) and Tb, where Dx, Dy, Dz, and
Dt are the spatial and temporal mesh sizes, and i, j, k are
integers with 0 6 i 6 N x; 0 6 j 6 Ny ; 0 6 k 6 N z

l, so that
NxDx = NX, NyDy = NY, and Nz

lDz ¼ Ll; l ¼ 1; 2; 3. In
Fig. 5. Contours of the temperature distributions in the xz-cross-section at y

t = 200 s, (c) t = 300 s, and (d) t = 400 s.
this mesh, we assume that ðu3Þnijk ¼ ðum
b Þijk when the grid

point (i, j,k) is in the mth level blood vessel. Because Eqs.
(9)–(11) are first-order ordinary differential equations once
T m

w is determined, they can be solved by using the fourth-
order Runge–Kutta method [40]. To develop an uncondi-
tionally stable finite difference scheme for Eq. (5), we first
follow the approach in [41,42] and introduce

Sl ¼ 1þ s
W l

bCl
b

qlCl

� �
T l þ s

oT l

ot
: ð20Þ

As such, Eq. (5) becomes

qlCl
oSl

ot
¼ kl

o2T l

ox2
þ o2T l

oy2
þ o2T l

oz2

� �
þ W l

bCl
bðT out � T lÞ:

ð21Þ

Discretizing Eqs. (20) and (21) gives
= 0.4 cm, where the artery is located, at various times: (a) t = 100 s, (b)
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ðslÞnþ1
ijk þ ðslÞnijk

2

¼ 1þ s
W l

bCl
b

qlCl

� � ðulÞnþ1
ijk þ ðulÞnijk

2
þ s
ðulÞnþ1

ijk � ðulÞnijk

Dt
;

ð22Þ

qlCl

ðslÞnþ1
ijk � ðslÞnijk

Dt
þ W l

bCl
b

ðulÞnþ1
ijk þ ðulÞnijk

2
� ðubÞout

" #

¼ klðd2
x þ d2

y þ d2
z Þ
ðulÞnþ1

ijk þ ðulÞnijk

2
; l ¼ 1; 2; 3; ð23Þ

where ðslÞnijk is the numerical approximation of (Sl)(iDx, j-

Dy,kDz,nDt), d2
xuijk ¼ 1

Dx2 ðuiþ1jk � 2uijk þ ui�1jkÞ and so on
for the y and z directions. It should be pointed out that
Eqs. (22) and (23) are unconditionally stable with a sec-
ond-order truncation error. The proof can be referred to
Fig. 6. Contours of the temperature distributions in the xz-cross-section at y =
t = 400 s.
[41,42]. The discrete interfacial equations for Eqs. (17a)
and (17b) are assumed to be, for any time level,

k1

ðu1ÞnijNz
1
� ðu1ÞnijNz

1
�1

Dz
¼ k2

ðu2Þnij1 � ðu2Þnij0

Dz
;

ðu1ÞnijNz
1
¼ ðu2Þnij0; ð24aÞ
and when the grid point (i, j) is in the tissue

k2

ðu2ÞnijNz
2
� ðu2ÞnijNz

2
�1

Dz
¼ k3

ðu3Þnij1 � ðu3Þnij0

Dz
;

ðu2ÞnijNz
2
¼ ðu3Þnij0: ð24bÞ
The interfacial condition, Eq. (16), between the tissue and
the lateral blood vessel is discretized as follows:
0.5 cm at various times: (a) t = 100 s, (b) t = 200 s, (c) t = 300 s, and (d)
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ðu3Þnþ1
ijk ¼ ðu3Þnþ1

iþ1jk þ Bi � Dx � ðu3Þnþ1
i�1jk

h i.
ð1þ Bi � DxÞ;

ð25aÞ

ðu3Þnþ1
ijk ¼ ðu3Þnþ1

ijþ1k þ Bi � Dy � ðu3Þnþ1
ij�1k

h i.
ð1þ Bi � DyÞ;

ð25bÞ

ðu3Þnþ1
ijk ¼ ðu3Þnþ1

ijkþ1 þ Bi � Dz � ðu3Þnþ1
ijk�1

h i.
ð1þ Bi � DzÞ;

ð25cÞ
where the grid point (i, j,k) is on the lateral walls of the
blood vessel in the x, y, z directions, respectively. The
top boundary condition is discretized as follows:

k1

ðu1Þnþ1
ij1 � ðu1Þnþ1

ij0

Dz
¼ h ðu1Þnþ1

ij0 � T air

h i
þ er T 2

a þ ½ðu1Þnij0�
2

n o
� T a þ ðu1Þnij0

h i
T a � ðu1Þnþ1

ij0

h i
; ð26Þ

for any time level n.
Fig. 7. Contours of the temperature distributions in the xz-cross-section at y

t = 200 s, (c) t = 300 s, and (d) t = 400 s.
Finally, Eq. (19) is discretized as follows:

Xnþ1
ijk � Xn

ijk

Dt
¼ f exp � DE

R
ðT lÞnþ1

ijk þðT lÞnijk
2

0
@

1
A: ð27Þ

To decrease the computational time, we first solve for
ðslÞnþ1

ijk from Eq. (22), substitute it into Eq. (23)

qlCl

Dt
1þ s

W l
bCl

b

qlCl
þ 2s

Dt

� �
ðulÞnþ1

ijk

�

þ 1þ s
W l

bCl
b

qlCl
� 2s

Dt

� �
ðulÞnijk � 2ðslÞnijk

�

þ W l
bCl

b

ðulÞnþ1
ijk þ ðulÞnijk

2
� ðubÞout

" #

¼ klðd2
x þ d2

y þ d2
z Þ
ðulÞnþ1

ijk þ ðulÞnijk

2
; l ¼ 1; 2; 3 ð28Þ
= 0.56 cm, where the vein is located, at various times: (a) t = 100 s, (b)
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and then employ a preconditioned Richardson iteration de-
scribed in [43–45] as follows:

L1
pre ðulÞnþ1

ijk

h iðIþ1Þ

¼ L1
pre ðulÞnþ1

ijk

h iðIÞ
� x

qlCl

Dt
1þ s

W l
bCl

b

qlCl
þ 2s

Dt

� �
½ðulÞnþ1

ijk �
ðIÞ

��

þ 1þ s
W l

bCl
b

qlCl
� 2s

Dt

� �
ðulÞnijk � 2ðslÞnijk

�

þ W l
bCl

b

½ðulÞnþ1
ijk �

ðIÞ þ ðulÞnijk
2

� ðubÞout

" #

�klðd2
x þ d2

y þ d2
z Þ
½ðulÞnþ1

ijk �
ðIÞ þ ðulÞnijk
2

)
; ð29Þ

where x is the relaxation factor, and the preconditioner is
chosen to be
Fig. 8. Contours of the temperature distributions in the yz-cross-section at x =
t = 400 s.
L1
pre ¼ 1þ s

W l
bCl

b

qlCl
þ 2s

Dt
þ W l

bCl
bDt

2qlCl

þ 2klDt
qlCl

1

Dx2
þ 1

Dy2

� �
� klDt

2qlCl
d2

z : ð30Þ

As such, the linear system, Eq. (28), can be transferred
into many tridiagonal linear systems. Noted that we denote
ðu3Þnijk ¼ ðum

b Þijk when the grid point (i, j,k) is in the mth level
blood vessel, the Thomas algorithm can be used line by line
along the z-direction. Our algorithm for predicting the skin
burning in a 3D skin structure induced by radiation heating
can be described as follows:

Step 1. Assume the wall temperature of the blood vessel
um

w. Obtain the blood temperature um
b , by solving

Eqs. (9)–(11) using the fourth-order Runge–
Kutta method. Then obtain the temperature
0.5 cm at various times: (a) t = 100 s, (b) t = 200 s, (c) t = 300 s, and (d)
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distribution ~u in the entire 3D skin structure by
solving Eqs. (22) and (29) coupled with the inter-
facial equations, Eqs. (24a) and (24b), and the
initial and boundary conditions.

Step 2. Update the wall temperature of the blood vessel,
um

w, by Eqs. (25a)–(25c).
Step 3. Repeat steps 1 and 2 until a convergent solution,

~u, at time level n + 1 is obtained.
Step 4. Calculate the damage function X by Eq. (27).

4. Numerical example

To test our algorithm, we chose a 3D composite skin
structure, as shown in Fig. 2, with the dimensions
1 cm � 1 cm � 1.208 cm. The values of the biological
Fig. 9. Contours of the skin burn distributions in the xz-cross-section at y =
t = 200 s, (c) t = 300 s, and (d) t = 400 s.
parameters used are given in Table 1. In our computation,
we considered heat transfer by convection from the skin’s
surface (h = 0.001 W/cm2 [33]), where the surface is
exposed to an ambient temperature of 200 �C, along with
radiation heating. Additionally, the thermal relaxation
time and emissivity were taken to be s = 20 s [21] and
e = 0.9 [39], respectively. Three meshes of 50 � 50 � 1208,
50 � 100 � 1208, and 100 � 100 � 1208 were chosen in
order to test the convergence of the solution. Other param-
eters used in our computation are listed in Tables 2 and 3.

Fig. 3 shows the temperature profiles at t = 200 s along
the lines (a) y = 0.5 cm and (b) x = 0.5 cm on the skin sur-
face, and (c) along the depth (the z-direction) at the center
of the skin surface, respectively, as well as (d) the temper-
ature profiles over time at the point, where x = 0.5 cm,
y = 0.5 cm, and z = 0.1 cm. It can be seen from this figure
0.4 cm, where the artery is located, at various times: (a) t = 100 s, (b)
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that there are no significant differences in the solutions
obtained based on these three meshes, implying the solu-
tion is independent of the mesh size.

Fig. 4 shows the comparison of the solutions verses time
at (a) x = 0.5 cm, y = 0.5 cm, and z = 0 cm, and (b)
x = 0.5 cm, y = 0.5 cm, and z = 0.1 cm, where the solutions
were obtained based on the Pennes equation, Eq. (4), and
the modified Pennes equation, Eq. (5), respectively. Com-
paring these two solutions, we see that there is a time delay
in the solution obtained by the modified Pennes equation.

Fig. 5 shows the contours of the temperature distribu-
tions in these xz -cross-sections at y = 0.40 cm, where the
artery is located, at various times (a) t = 100 s, (b)
t = 200 s, (c) t = 300 s, and (d) t = 400 s. Fig. 6 shows the
contours of the temperature distributions in the xz-cross-
Fig. 10. Contours of the skin burn distributions in the xz-cross-section at y =
t = 400 s.
section at y = 0.5 cm at various times (a) t = 100 s, (b)
t = 200 s, (c) t = 300 s, and (d) t = 400 s. Fig. 7 shows
the contours of the temperature distributions at
y = 0.56 cm, where the vein is located, at various times
(a) t = 100 s, (b) t = 200 s, (c) t = 300 s, and (d) t = 400 s.
Fig. 8 shows the contours of the temperature distributions
at the yz-cross-section at x = 0.5 cm, at various times (a)
t = 100 s, (b) t = 200 s, (c) t = 300 s, and (d) t = 400 s. It
can be seen from these figures that the temperature profiles
are symmetric in the xz-cross-section at y = 0.5 cm, and the
temperature elevations around the region where the vein is
located are higher than those around the region where the
artery is located. This implies that the vein is carrying the
heat out, away from the heated area, and into the body
core.
0.5 cm at various times: (a) t = 100 s, (b) t = 200 s, (c) t = 300 s, and (d)
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Figs. 9–12 show the contours of the damage correspond-
ing to Figs. 5–8 showing the temperature distributions.
Since values of X = 0.53, 1.0, 104 correspond to the first,
second, and third degree burn injuries, respectively [39],
one may see from these figures that the skin appears to
be second burn at t = 200 s, and the third degree burn at
t = 300 s and t = 400 s.

5. Conclusion

In this study, we have developed a mathematical
model for predicting the temperature of, and thermal
damage suffered by, skin due to radiation heating. The
model takes into account the relatively large thermal
relaxation time of biological tissue and the effects of high
thermal radiation on such tissue using the Maxwell–Cat-
Fig. 11. Contours of the skin burn distributions in the xz-cross-section at y

t = 200 s, (c) t = 300 s, and (d) t = 400 s.
taneo thermal flux law in conjunction with the fourth
power law. The tissue is considered to be a 3D, triple-
layered skin structure wherein are embedded countercur-
rent multi-level blood vessels, arteries and veins. Further,
the dimensions and blood flow rates were determined
based on the constructal theory of multi-scale tree-
shaped heat exchangers.

Our numerical results show that the classic Pennes equa-
tion predicts a greater temperature than the modified (i.e.,
Maxwell–Cattaneo based) equation (see Fig. 4). Addition-
ally, the latter equation exhibits the expected time delay in
the temperature solution (see Fig. 4b).

The exploratory approach developed in this paper could
be used in future studies: e.g., by considering a larger area
of skin structure, with more complicated dendritic counter-
current multi-level blood vessels, as well as modeling such
= 0.56 cm, where the vein is located, at various times: (a) t = 100 s, (b)



Fig. 12. Contours of the skin burn distributions in the yz-cross-section at x = 0.5 cm at various times: (a) t = 100 s, (b) t = 200 s, (c) t = 300 s, and (d)
t = 400 s.
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well documented effects of thermal damage as skin wrinkles
and tissue shrinkage.
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